Jet Stream Velocity from Azipod on Stadsgården

A Master Thesis by Viking Alexander Schumacher

Mattias Sandell
Technical Director, Ports of Stockholm
Stadsgården, Stockholm
Viking Glory

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, L_{OA}</td>
<td>220</td>
<td>m</td>
</tr>
<tr>
<td>Beam, B</td>
<td>35.5</td>
<td>m</td>
</tr>
<tr>
<td>Draught, T</td>
<td>6.8</td>
<td>m</td>
</tr>
<tr>
<td>Gross Tonnage</td>
<td>63 000</td>
<td>-</td>
</tr>
<tr>
<td>Passenger Capacity</td>
<td>2 800</td>
<td>-</td>
</tr>
<tr>
<td>Propeller Diameter, D_p</td>
<td>5.3</td>
<td>m</td>
</tr>
</tbody>
</table>

Turku-Åland-Stockholm Delivery: 2021
Azipod

360° Rotational Capability
Project Overview
World Association for Waterborne Transport Infrastructure

Guidelines for Protecting Berthing Structures from Scour Caused by Ships
Propulsion on Viking Glory

2 Azipods
Max Output: 7.885 MW each
Tractor Configuration
Initial Jet Stream Velocity

PIANC:
\[V_0 = 1.6nD_p\sqrt{K_T} \]

Semi-Empirical:
\[V_0 = 1.33nD_p\sqrt{K_T} \]

Glory:
\[V_0 = 9.74 \text{ m/s} \]
Jet Stream Distribution

PIANC:
\[V_{\text{axis}} = V_0 \text{ for } \frac{x}{D_p} < 1.9 \]
\[V_{\text{axis}} = 1.9V_0\left(\frac{x}{D_p}\right)^{-1} \text{ for } \frac{x}{D_p} > 1.9 \]

Semi-Empirical:
\[V_{\text{max}} = AV_0\left(\frac{x}{D_p}\right)^a \]
Jet Stream Distribution

Flow Velocity using German Method (Thrusters). Engine Power 7885kW
Compared with Viking Grace

Loa: 218m Beam: 31.8m
Compared with Viking Grace

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Draught</td>
<td>6.8</td>
<td>m</td>
</tr>
<tr>
<td>Stern Thruster Diameter, D_p</td>
<td>1.31</td>
<td>m</td>
</tr>
<tr>
<td>Prop. From Bottom, h_p</td>
<td>7.3</td>
<td>m</td>
</tr>
<tr>
<td>Stern Thruster Power, P</td>
<td>1700</td>
<td>kW</td>
</tr>
<tr>
<td>Ship Centerline to Tube End</td>
<td>1.73</td>
<td>m</td>
</tr>
<tr>
<td>Dist. to Quay Wall, L</td>
<td>15</td>
<td>m</td>
</tr>
</tbody>
</table>
Compared with Viking Grace

Glory:
\[V_{L=9.5} = 9.74 \text{ m/s} \]

Grace:
\[V_{L=15} = 2.43 \text{ m/s} \]
Correspondence with ABB

Average flow velocity in Bollard Pull conditions

Flow Velocity using German Method (Thrusters). Engine Power 7885kW
Stadsgården

Box Caisson Launched: November 19, 1907
Existing quay
Current Status of Stadsgården

Multi-beam
Current Status of Stadsgården

Dives 2017
Berthing Structures: Failure
Recommended Action

• Detailed Survey of Quay Wall in Affected Area
 • Junctions
 • Toe of Apron

• Installation of Steel Plates and/or Current Deflectors

• Extension of Fenders

• Operational Guidelines
 • Discuss with Pilot
 • Flow Detector Warning System
Designed quay repair and strengthening
Uncertainties with PIANC Report 180

• No chapter for Azipods
• Natural currents not taken into account
• Multiple prop.
• No limit between ”free propagation” and ”restricted propagation”
• Wall friction ignored
• Focus on scour, no erosion warning
• Equations for thruster and not prop. with rudder
• Error of ±20%
Thanks!

www.stockholmshamnar.se